

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Cubic Lateral Ideals in Ternary Near-Rings

V. Chinnadurai¹, K. Bharathivelan²

Associate Professor, Dept. of Mathematics, Annamalai University, Chidambaram, Tamilnadu, India Research Scholar, Dept. of Mathematics, Annamalai University, Chidambaram, Tamilnadu, India²

Abstract: In this paper, we introduced the notion of cubic lateral ideals in ternary near-rings and obtain some characterizations of cubic lateral ideals in ternary near-rings. Finally, we investigate some related properties using the concepts of cubic homomorphism and anti-homomorphism between ternary near-rings.

Keywords: Ternary near-rings, lateral ideal, cubic lateral ideal, cubic homomorphism.

I. INTRODUCTION

Zadeh [16,17] in 1965 introduced the notion of fuzzy set. R to R. Then (R, +, []) is a right (left, lateral) ternary near-The concept of fuzzy subgroup was first introduced by ring if Rosenfeld [11] in 1971. In 1991, Abou-Zaid [2] i) (R, +) is a group (not necessarily abelian) investigated the ideal of fuzzy subnear-rings and fuzzy ii) (R,[]) is a ternary semi group ideals in near-rings. Kim et al [8] applied a few concepts iii) [(a + b)cd] = [acd] + [bcd], of fuzzy ideals of near-rings. Ternary near-ring is the ([cd(a+b)] = [cda] + [cdb], [c(a+b)d] = [cad] +generalized structure of near-ring. Lehmer [9] in 1932 introduced the notion of ternary algebraic system. Dutta et for every a, b, c, $d \in R$. al [5] introduced the concept of ternary semi ring which is a generalization of the ternary ring introduced by Lister ideal of ternary semi ring to define left ternary near-ring, i) $x - y \in S$ $\forall x, y \in S$ ternary subnear-ring and their ideals. Thillaigovindan et al ii) $[SSS] \subseteq S$. [13] discussed the concept of Interval valued fuzzy ideals of near-rings. Jun et al [7] introduced the concept of cubic sets. This structure encompasses interval-valued fuzzy set and fuzzy set. Also Jun et al [6] introduced the notion of cubic subgroups. Chinnadurai et al [3] introduced the notion of cubic bi-ideals in near-rings.

The purpose of this paper to introduce the notion of cubic lateral ideals in ternary near-rings and concept of near-rings. We Investigate some basic results, properties and examples.

II.PRELIMINARIES

In this section, we present some definitions that are used in **Definition 2.7.** [1] A mapping $\mu: X \to [0,1]$ is called a the sequel.

Definition 2.1 [12] Let R be a non-empty set and [] be an operation defined from $R \times R \times R$ to R called a ternary **Definition 2.8.** [4] A fuzzy subset μ of R is called a fuzzy operation. Then (R, []) is a ternary semigroup if for every $x, y, z, u, v \in R$,

[[xyz]uv] = [x[yzu]v] = [xy[zuv]].

Definition 2.2 [12] Let A, B, C be non-empty subsets of a $[ABC] = \{[abc] \in R : a \in A, b \in B, c \in C\}.$

Definition 2.3 [14] Let R be a non-empty set together with ii) $\mu(y + x - y) \ge \mu(x)$ a binary operation + and ternary operation []: $R \times R \times$

[cbd])

Throughout this paper, R denotes a right ternary near-ring.

[10]. To discuss these results to near-ring using ternary **Definition 2.4.** [15] A non-empty subset S of a ternary product Warud Nakkhaseen et al [15] have applied the near-ring R is called a ternary subnear-ring of R, if

> **Definition 2.5** [14] Let R be a right ternary near-ring, Let (I, +) be a normal subgroup of (R, +). Then I is called (i) a right ideal of R if $[IRR] \subseteq I$, (ii) a left ideal of R lif $[xy(z+c)z] - [xyz] \in I$, (iii) a lateral ideal of R if $[x(y+c)z] - [xyz] \in I$ where $x, y, z \in R, c \in I$. I is an ideal of R if it is a right, lateral and left ideal of R.

homomorphism and anti-homomorphism between ternary **Definition 2.6.** [4] Let I be an lateral ideal of R. For each a + I, b + I in the factor group R/I, we define (a + I) +(b + I) = (a + b) + I and (a + I)(b + I) = (ab) + I. Then R/I is a near-ring which we call the residue class near-ring of R with respect to I.

fuzzy subset of X.

subternary near-ring of R if

i) $\mu(x - y) \ge \min{\{\mu(x), \mu(y)\}}$

ii) $\mu([xyz]) \ge \min \{\mu(x), \mu(y), \mu(z)\}$

for all $x, y, z \in R$.

Then **Definition 2.9.** [4] A fuzzy subset μ of R is called a fuzzy ideal of R if

i) $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$

iii) $\mu([xyz]) \ge \mu(x)$

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

iv)
$$\mu([xy(z + c)] - [xyz]) \ge \mu(c)$$

v) $\mu([x(y + c)z] - [xyz]) \ge \mu(c)$

satisfies (i), (ii) and (iv). If μ is a fuzzy right ideal of R if it satisfies (i), (ii) and (iii). If μ is a fuzzy lateral ideal of R if it satisfies (i), (ii) and (v).

Definition 2.10. [1] Let X be a non-empty set. A mapping $\bar{\mu}: X \to D[0,1]$ is called interval-valued fuzzy set, where D[0,1] denote the family of all closed sub intervals of [0,1] and $\bar{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]$ for all $x \in X$, where μ^{-} and μ^+ are fuzzy subsets of X such that $\mu^-(x) \le \mu^+(x)$ for

Definition 2.11. [6] Let X be a non-empty set. A cubic set \mathcal{A} in X is a structure $\mathcal{A} = \{(x, \overline{\mu}_A(x), f_A(x)) : x \in X\}$ which is briefly denoted by $\mathcal{A}=\langle \bar{\mu}_A, f_A \rangle$, where $\bar{\mu}_A = [\mu_A^-, \mu_A^+]$ is an interval-valued fuzzy set (briefly, IVF) in X and f is a fuzzy set in X. In this case, we will use $\mathcal{A}(x) =$ $\langle \bar{\mu}_{A}(x), f_{A}(x) \rangle$

$$= \langle [\mu^{-}(x), \mu^{+}(x)], f_{A}(x) \rangle \forall x \in X.$$

Definition 2.12. [7] For any non-empty subset G of a set X, the characteristic cubic set of G is defined to be a

$$\begin{array}{lll} \chi_G(x) = < x, \bar{\mu}_{\chi_G}(x), \gamma_{\chi_G}(x) \colon x \in X > & \text{which} & \text{is} & \text{briefly} \\ & \text{denoted} & & \text{by} \end{array}$$

denoted by
$$\chi_G(x) = \langle \bar{\mu}_{\chi_G}(x), \gamma_{\chi_G}(x) \rangle \qquad \text{where}$$

$$\bar{\mu}_{\chi_G}(x) = \begin{cases} [1,1] & \text{if } x \in G \\ [0,0] & \text{otherwise} \end{cases}$$
 and
$$\gamma_{\chi_G}(x) = \begin{cases} 0 & \text{if } x \in G \\ 1 & \text{otherwise} \end{cases}$$

III. MAIN RESULTS

ternary near-rings and obtain some characterizations of cubic lateral ideals in right ternary near-rings.

Definition 3.1. A cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ of R is called a cubic subternary near-ring of R if

i)
$$\bar{\mu}(x - y) \ge \min\{\bar{\mu}(x), \bar{\mu}(y)\}$$
 and

$$\omega(x - y) \le \max\{\omega(x), \omega(y)\}\$$

ii)
$$\bar{\mu}([xyz]) \ge \min \{\bar{\mu}(x), \bar{\mu}(y), \bar{\mu}(z)\}$$
 and

$$\omega([xyz]) \le \max \{\omega(x), \omega(y), \omega(z)\}$$
 for all

$$x, y, z \in R$$
.

Definition 3.2. A cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ of R is called a If cubic ideal of R if

i)
$$\bar{\mu}(x - y) \ge min \{\bar{\mu}(x), \bar{\mu}(y)\}$$
 and

$$\omega(x - y) \le \max\{\omega(x), \omega(y)\}$$

ii)
$$\bar{\mu}(y + x - y) \ge \bar{\mu}(x)$$
 and

$$\omega(y + x - y) \le \omega(x)$$

iii)
$$\bar{\mu}([xyz]) \ge \bar{\mu}(x)$$
 and

$$\omega([xyz]) \le \omega(x)$$

iv)
$$\bar{\mu}([xy(z+c)] - [xyz]) \ge \bar{\mu}(c)$$
 and

$$\omega([xy(z+c)] - [xyz]) \le \omega(c)$$

v)
$$\bar{\mu}([x(y+c)z] - [xyz]) \ge \bar{\mu}(c)$$
 and

$$\omega([x(y+c)z] - [xyz]) \le \omega(c)$$

for every x, y, z, c \in R. The cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic

left ideal of R if it satisfies (i), (ii) and (iv). The cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic right ideal of R if it satisfies (i), (ii) for every $x, y, z, c \in R$. If μ is a fuzzy left ideal of R if it and (iii). The cubic set $\mathcal{A} = \langle \overline{\mu}, \omega \rangle$ is a cubic lateral ideal of R if it satisfies (i), (ii) and (v).

Example 3.3. Let $R = \{a, b, c, d\}$ be a set with two binary operations defined as follows

+	a	b	c	d
a	a	b	С	d
b	b	a	d	c
С	c	d	b	a
d	d	c	a	b

•	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	a	c
d	a	a	a	d

Define the ternary product [] of R by $[xyz] = (x \cdot y) \cdot z$ for every $x, y, z \in R$. Then (R, +, []) is a right ternary near-ring.

Define a cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ in R $\bar{\mu}(b) = [0.5, 0.6],$ $\bar{\mu}(a) = [0.8, 0.9],$ $\bar{\mu}(c) = [0.2, 0.3] = \bar{\mu}(d)$ is an interval-valued fuzzy lateral ideal of R and $\omega(a) = 0.2$, $\omega(b) = 0.3$, $\omega(c) =$ $0.7 = \omega(d)$ is a fuzzy lateral Thus $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R.

Definition 3.4. Let $\mathcal{A}_i = \langle \bar{\mu}_i, \omega_i \rangle$ be cubic lateral ideals of In this section we define cubic lateral ideals in right near-rings R_i for i = 1,2,3,...,n. Then the cubic direct product of \mathcal{A}_i , (i = 1,2,3,...,n) is a function

$$(\bar{\mu}_1 \times \bar{\mu}_2 \times, ..., \times \bar{\mu}_n): (R_1 \times R_2 \times ... \times R_n)$$

 $\rightarrow D[0,1]$ and

$$(\omega_1 \times \omega_2 \times, ..., \times \omega_n): R_1 \times R_2 \times ... \times R_n \rightarrow [0,1]$$
 defined

$$[0,1] \qquad \text{defined} \qquad \text{by}$$

$$(\bar{\mu}_1 \times \bar{\mu}_2 \times, ..., \times \bar{\mu}_n)(x_1, x_2, ..., x_n)$$

$$= \min\{\bar{\mu}_1(x_1), \bar{\mu}_2(x_2), \dots, \bar{\mu}_n(x_n)\}$$
 and
$$(\omega_1 \times \omega_2 \times, \dots, \times \omega_n)(x_1, x_2, \dots, x_n)$$

$$= \max\{\omega_1(x_1), \omega_2(x_2), ..., \omega_n(x_n)\}.$$
 Lemma 3.5. Let $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ be a cubic lateral ideal of R.

If
$$A(x) \subset A(y)$$
 that is $\bar{\mu}(x) < \bar{\mu}(y)$ and $\omega(x) > \omega(y)$ then $\bar{\mu}(x-y) = \bar{\mu}(x) = \bar{\mu}(y-x)$

$$\omega(x - y) = \omega(x) = \omega(y - x)$$

Proof: Let $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ be a cubic lateral ideal of R. Let Then $x, y \in R$.

$$\bar{\mu}(x-y) \ge \min\{\bar{\mu}(x), \bar{\mu}(y)\} = \bar{\mu}(x)$$

$$\bar{\mu}(x) = \bar{\mu}(x - y + y)$$
$$= \bar{\mu}((x - y) - (-y))$$

$$= \bar{\mu}\big((x-y)-(y)\big)$$

$$\geq \min\{\bar{\mu}(x-y), \bar{\mu}(y)\}\$$

again

210

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

$$\begin{split} \bar{\mu}(y-x) &\geq \min\{\bar{\mu}(y), \bar{\mu}(x)\} = \bar{\mu}(x) \\ \bar{\mu}(x) &= \bar{\mu}(x-y+y) \\ &= \bar{\mu}(y-(y-x)) \\ &\geq \min\{\bar{\mu}(y), \bar{\mu}(y-x)\} \\ &= \bar{\mu}(y-x). \end{split}$$

Similarly we can prove the other result.

Theorem 3.6. If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R, then the set $R_{\mathcal{A}} = \{x \in R \mid \mathcal{A}(x) = \mathcal{A}(0)\}$ is a lateral ideal of R.

Proof: Since $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ be a cubic lateral ideal of R and $x, y \in R$, then $\mathcal{A}(x) = \mathcal{A}(0)$ and $\mathcal{A}(y) = \mathcal{A}(0)$. Suppose $x, y, z \in R_{\mathcal{A}}$.

Then
$$\bar{\mu}(x) = \bar{\mu}(y) = \bar{\mu}(z) = \bar{\mu}(0)$$
 and $\omega(x) = \omega(y) = \omega(z) = \omega(0)$

Since, $\bar{\mu}$ is an i-v fuzzy lateral ideal of R $\bar{\mu}(x-y) \geq min\{\bar{\mu}(x),\bar{\mu}(y)\} = min\{\bar{\mu}(0),\bar{\mu}(0)\} = \bar{\mu}(0)$ and ω is a fuzzy lateral ideal of R $\omega(x-y) \leq max\{\omega(x),\omega(y)\} = max\{\omega(0),\omega(0)\} = \omega(0)$

Thus $x - y \in R_{\mathcal{A}}$. For every $y \in R$ and $x \in R_{\mathcal{A}}$ we have $\bar{\mu}(y + x - y) \ge \bar{\mu}(x) = \bar{\mu}(0)$ and $\omega(y + x - y) \le \omega(x) = \omega(0)$

Thus
$$y+x-y\in R_{\mathcal{A}}.$$
 Let $x,y,z\in R$ and $c\in R_{\mathcal{A}}$
$$\bar{\mu}([x(y+c)z]-[xyz])\geq \bar{\mu}(c)=\bar{\mu}(0) \qquad \omega([x(y+cz-[xyz]\leq \omega c=\omega 0$$
 Thus
$$[x(y+c)z]-[xyz]\in R_{\mathcal{A}}.$$

Thus [x(y+c)z]Therefore, R_A is a lateral ideal of R.

Theorem 3.7. Let I be a lateral ideal of R. If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R, then the cubic set $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ of R/I defined by $\bar{\mu}(a+I) = \sup_{x \in I} \bar{\mu}(a+x)$ and $\sum_{i \in I}^{\sup} \bar{\mu}(x_i) = \sum_{i \in I}^{\inf} \bar{\mu}(x_i) = \sum$

Proof: Let $a,b \in R$ be such that a+I=b+I. Then b=a+y for some $y \in I$. $\bar{\mu}(b+I) = \sup_{x \in I} \bar{\mu}(b+x)$ $= \sup_{x \in I} \bar{\mu}(a+y+x)$ $= \sup_{x+y=i \in I} \bar{\mu}(a+i)$ $= \bar{\mu}(a+I)$ $\omega(b+I) = \inf_{x \in I} \omega(b+x)$ $= \inf_{x \in I} \omega(a+y+x)$ $= \inf_{x+y=i \in I} \omega(a+i)$ $= \omega(a+I)$

This means that $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is well defined. Let ideal of R, where λ is any $x+I,y+I,z+I,c+I \in R/I$

$$\bar{\mu}((x+I) - (y+I)) = \bar{\mu}((x-y) + I)$$

$$= \sup_{i \in I} \bar{\mu}((x-y) + i)$$

$$= \sup_{i = p - q \in I} \bar{\mu}((x-y) + (p-q))$$

$$= \sup_{p,q \in I} \bar{\mu}((x+p) - (y+q))$$

$$\geq \sup_{p,q \in I} \min\{\bar{\mu}(x+p), \bar{\mu}(y+q)\}$$

$$= \min\{ \sum_{p \in I}^{sup} \bar{\mu}(x+p), \sum_{q \in I}^{sup} \bar{\mu}(y+q) \}$$

$$= \min\{ \bar{\mu}(x+I), \bar{\mu}(y+I) \}$$

$$\omega((x+I) - (y+I)) = \omega((x-y)+I)$$

$$= \sum_{i=1}^{inf} \omega((x-y)+i)$$

$$= \sum_{i=p-q\in I}^{inf} \omega((x-y)+(p-q))$$

$$= \sum_{i=p}^{inf} \omega((x+p)-(y+q))$$

$$\leq \sum_{i=1}^{inf} \max\{ \omega(x+p), \omega(y+q) \}$$

$$= \max\{ \sum_{p \in I}^{inf} \omega(x+p), \sum_{q \in I}^{inf} \omega(y+q) \}$$

$$= \max\{ \sum_{p \in I}^{inf} \omega(x+I), \omega(y+I) \}$$

$$\bar{\mu}((y+I) + (x+I) - (y+I))$$

$$= \sum_{i \in I}^{sup} \bar{\mu}((y+x-y)+i)$$

$$= \sup_{i=q+p-q \in I} \overline{\mu}((y+x-y) + (q+p-q))$$

$$= \sup_{\substack{sup \\ p \in I, q \in I}} \overline{\mu}((y+q) + (x+p) - (y+q))$$

$$\geq \sup_{\substack{p \in I, q \in I}} \overline{\mu}(x+p)$$

$$= \overline{\mu}(x+I)$$

$$\omega((y+I) + (x+I) - (y+I))$$

$$= \omega((y+x-y) + I)$$

$$= \inf_{i \in I} \omega((y+x-y) + i)$$

$$= \inf_{i \in I} \omega((y+x-y) + i) + (q+p-q)$$

$$= \inf_{\substack{i \in I \\ p \in I, q \in I}} \omega((y+q) + (x+p) - (y+q))$$

$$\leq \inf_{\substack{p \in I, q \in I \\ p \in I}} \omega(x+p)$$

$$= \omega(x+I)$$

$$\overline{\mu}([(x+I)((y+I) + (c+I))(z+I)]$$

$$-[(x+I)(y+I)(z+I)])$$

$$= \bar{\mu}(([x(y+c)z] - [xyz]) + I)$$

$$= \sup_{i \in I} \bar{\mu}(([x(y+c)z] - [xyz]) + i)$$

$$\geq \sup_{i \in I} \bar{\mu}([xcz] + [xiz]) \quad \text{since} \quad xiz \in I$$

$$= \sup_{i \in I} \bar{\mu}([x(c+i)z])$$

$$\geq \sup_{i \in I} \bar{\mu}(c+i)$$

$$= \bar{\mu}(c+I)$$

$$\omega([(x+I)((y+I) + (c+I))(z+I)]$$

$$\begin{aligned} \big[(x+I) \big((y+I) + (c+I) \big) (z+I) \big] \\ &- \big[(x+I) (y+I) (z+I) \big] \big) \\ &= \omega \big((\big[x(y+c)z \big] - \big[xyz \big] \big) + I \big) \\ &= \inf_{i \in I} \omega \big(\big[x(y+c)z \big] - \big[xyz \big] \big) + i \big) \\ &\leq \inf_{i \in I} \omega \big(\big[xcz \big] + \big[xiz \big] \big) \quad \text{since} \quad xiz \in I \\ &= \inf_{i \in I} \omega \big(\big[x(c+i)z \big] \big) \\ &\leq \inf_{i \in I} \omega (c+i) \\ &= \omega (c+I) \end{aligned}$$

Hence, $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R/I.

Theorem 3.8. If $\{A_i\} = \langle \bar{\mu}_i, \omega_i | i \in \Lambda \rangle$ be a family of cubic lateral ideal of R, then the cubic set $\prod_{i \in \Lambda} A_i = \langle \bigcap_{i \in \Lambda} \bar{\mu}_i, \bigcup_{i \in \Lambda} \omega_i \rangle$ is also a cubic lateral ideal of R, where Λ is any index set.

Proof: Let $\mathcal{A}_i = \langle \bar{\mu}_i, \omega_i | i \in \lambda \rangle$ be a family of cubic lateral ideals of R. Let $x,y,z,c \in R$ and $\bar{\mu} = \bigcap \bar{\mu}_i$; $\omega = \bigcup \omega_i$ then $\bar{\mu}(x) = \bigcap \bar{\mu}_i(x) = (\inf \bar{\mu}_i)(x)$ $= \inf \bar{\mu}_i(x)$

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

```
\omega(x) = \cup \ \omega_i(x) = (\sup \ \omega_i)(x)
                           = \sup \omega_i(x)
\bar{\mu}(x-y) = \inf \bar{\mu}_i (x-y) \}
                \geq \inf \left\{ \min \{\bar{\mu}_i(x), \bar{\mu}_i(y) \} \right\}
                 = min\{inf \bar{\mu}_i(x), inf \bar{\mu}_i(y)\}\
                   = min\{\cap \bar{\mu}_i(x), \cap \bar{\mu}_i(y)\}\
                                                                                        and
\omega(x-y) = \sup \omega_i(x-y)
                  \leq \sup\{\max\{\omega_i(x),\omega_i(y)\}\}\
                = max \{ sup \ \omega_i(x), \ sup \ \omega_i(y) \}
                 = max \{ \cup \omega_i(x), \cup \omega_i(y) \}
\omega(x - y) = \max\{\omega(x), \omega(y)\}\
\bar{\mu}(y+x-y) = \inf\{\bar{\mu}_i (y+x-y)\}\
                       \geq \inf\{\bar{\mu}_i(x)\}
                       =\cap \bar{\mu}_i(x)
\omega(y+x-y) = \sup\{\omega_i (y+x-y)\}\
                       \leq \sup\{\omega_i(x)\}\
                       = \cup \omega_i(x)
                                                                                =\omega(x) = \bar{\mu}_i(x)
\bar{\mu}([x(y+c)z]-[xyz])
              = \inf \{\bar{\mu}_i ([x(y+c)z] - [xyz])\}
              \geq \inf\{\bar{\mu}_i(c)\}
              =\cap \bar{\mu}_i(c)
\omega([x(y+c)z]-[xyz])
              = \sup\{\omega_i \left( \left[ x(y+c)z \right] - \left[ xyz \right] \right) \}
              \leq \sup\{\omega_i(c)\}
             =\cup \omega_i(c)
              =\omega(c)
Hence, \prod_{i \in A} A_i = \langle \bigcap_{i \in A} \bar{\mu}_i, \bigcup_{i \in A} \omega_i \rangle is a cubic lateral = \bar{\mu}_i([(x_1, x_2, ..., x_n)((y_1, y_2, ..., y_n))))
```

Theorem 3.9. The direct product of cubic lateral ideals of

ternary near-rings is also a cubic lateral ideal of ternary $= \bar{\mu}_i([x_1(y_1 + c_1)z_1] - [x_1y_1z_1],$

```
Proof: Let A_i = \langle \bar{\mu}_i, \omega_i \rangle be cubic lateral ideals of ternary
near-rings R_i for i = 1,2,3,...,n. Let x = (x_1, x_2,..., x_n),
y = (y_1, y_2, ..., y_n),
z = (z_1, z_2, ..., z_n), c = (c_1, c_2, ..., c_n)
                            \in R_1 \times R_2 \times ... \times R_n.
\bar{\mu}_i(x-y)
= \bar{\mu}_i((x_1, x_2, ..., x_n) - (y_1, y_2, ..., y_n))
= \bar{\mu}_i(x_1 - y_1, x_2 - y_2, ..., x_n - y_n)
= min\{\bar{\mu}_1(x_1-y_1), \bar{\mu}_2(x_2-y_2),\
                                          ..., \bar{\mu}_n(x_n-y_n)
\geq min\{min\{\bar{\mu}_1(x_1), \bar{\mu}_1(y_1)\},\
                  min\{\bar{\mu}_2(x_2), \bar{\mu}_2(y_2)\}\
                           ,..., min\{\bar{\mu}_n(x_n), \bar{\mu}_n(y_n)\}\}
= min\{min\{\bar{\mu}_1(x_1), \bar{\mu}_2(x_2), ..., \bar{\mu}_n(x_n)\}\
              min\{\bar{\mu}_1(y_1), \bar{\mu}_2(y_2), ..., \bar{\mu}_n(y_n)\}\}
= min \mathbb{I}(\bar{\mu}_1 \times \bar{\mu}_2 \times, ...,
                                                 \times \bar{\mu}_n)(x_1,x_2,\ldots,x_n),
          (\bar{\mu}_1 \times \bar{\mu}_2 \times, ..., \times \bar{\mu}_n)(y_1, y_2, ..., y_n)\} \quad \bar{\mu}_i(x - y) =
min\{\bar{\mu}_i(x), \bar{\mu}_i(y)\}
\omega_i(x-y)
=\omega_i((x_1,x_2,...,x_n)-(y_1,y_2,...,y_n))
=\omega_i(x_1-y_1,x_2-y_2,...,x_n-y_n)
```

```
= max [\omega_1(x_1 - y_1), \omega_2(x_2 - y_2),
                                                  ..., \omega_n(x_n-y_n)
             \leq max\{max\{\omega_1(x_1),\omega_1(y_1)\},
                          max\{\omega_{2}(x_{2}), \omega_{2}(y_{2})\},\
                                    ..., max\{\omega_n(x_n), \omega_n(y_n)\}\}
                         = \max\{\max\{\omega_1(x_1), \omega_2(x_2), \dots, \omega_n(x_n)\},\
                        max\{\omega_1(y_1), \omega_2(y_2), ..., \omega_n(y_n)\}\}
             = \max\{(\omega_1 \times \omega_2 \times, ..., \times \omega_n)(x_1, x_2, ..., x_n),
                     (\omega_1 \times \omega_2 \times, ..., \times \omega_n)(y_1, y_2, ..., y_n)
             \omega_i(x - y) = \max\{\omega_i(x), \omega_i(y)\}\
             \bar{\mu}_i(y+x-y) = \bar{\mu}_i((y_1, y_2, ..., y_n))
                         +(x_1,x_2,...,x_n)-(y_1,y_2,...,y_n))
              = \bar{\mu}_i(y_1 + x_1 - y_1, y_2 + x_2 - y_2, \dots,
                                                          y_n + x_n - y_n
= \bar{\mu}(x) = min\{\bar{\mu}_1(y_1 + x_1 - y_1),
             \bar{\mu}_2(y_2 + x_2 - y_2), ..., \bar{\mu}_n(y_n + x_n - y_n)
             \geq min\{\bar{\mu}_1(x_1), \bar{\mu}_2(x_2), ..., \bar{\mu}_n(x_n)\}
             = (\bar{\mu}_1 \times \bar{\mu}_2 \times, ..., \times \bar{\mu}_n)(x_1, x_2, ..., x_n)
             \omega_i(y+x-y) = \omega_i((y_1, y_2, ..., y_n))
                         +(x_1, x_2, ..., x_n) - (y_1, y_2, ..., y_n))
             =\omega_i(y_1+x_1-y_1,y_2+x_2-y_2,\dots\,,
                                                          y_n + x_n - y_n
= \bar{\mu}(c) = \max\{\omega_1(y_1 + x_1 - y_1),\,
              \omega_2(y_2 + x_2 - y_2), ..., \omega_n(y_n + x_n - y_n)
             \leq max\{\omega_1(x_1), \omega_2(x_2), \dots, \omega_n(x_n)\}
             =(\omega_1\times\omega_2\times,...,\times\omega_n)(x_1,x_2,...,x_n)
             =\omega_i(x)
             \bar{\mu}_i([x(y+c)z]-[xyz])
                                       +(c_1,c_2,...,c_n)(z_1,z_2,...,z_n)
                                       -[(x_1,x_2,...,x_n)(y_1,y_2,...,y_n)]
                                                      (z_1, z_2, ..., z_n)])
                         [x_2(y_2+c_2)z_2]-[x_2y_2z_2],...,
                                 [x_n(y_n+c_n)z_n]-[x_ny_nz_n])
             = min\{\bar{\mu}_1([x_1(y_1+c_1)z_1]-[x_1y_1z_1]),
                        \bar{\mu}_2([x_2(y_2+c_2)z_2]-[x_2y_2z_2]),...,
                        \bar{\mu}_n([x_n(y_n+c_n)z_n]-[x_ny_nz_n])
             \geq min\{\bar{\mu}_1(c_1), \bar{\mu}_2(c_2), ..., \bar{\mu}_n(c_n)\}
             = (\bar{\mu}_1 \times \bar{\mu}_2 \times, \dots, \times \bar{\mu}_n)(c_1, c_2, \dots, c_n)
             =\bar{\mu}_i(c)
             \omega_i([x(y+c)z]-[xyz])
             =\omega_i([(x_1,x_2,...,x_n)((y_1,y_2,...,y_n))]
                                       +(c_1,c_2,...,c_n)(z_1,z_2,...,z_n)
                                       -[(x_1,x_2,...,x_n)(y_1,y_2,...,y_n)]
                                                      (z_1, z_2, ..., z_n)])
             = \omega_i([x_1(y_1 + c_1)z_1] - [x_1y_1z_1],
                         [x_2(y_2+c_2)z_2]-[x_2y_2z_2],...,
                                 [x_n(y_n+c_n)z_n]-[x_ny_nz_n])
             = max\{\omega_1([x_1(y_1+c_1)z_1]-[x_1y_1z_1]),
                         \omega_2([x_2(y_2+c_2)z_2]-[x_2y_2z_2]),...,
                         \omega_n([x_n(y_n+c_n)z_n]-[x_ny_nz_n])\}
             \leq max\{\omega_1(c_1), \omega_2(c_2), \dots, \omega_n(c_n)\}
```

 $=\omega_i(c)$

 $=(\omega_1\times\omega_2\times,...,\times\omega_n)(c_1,c_2,...,c_n)$

Hence, The direct product of cubic lateral ideals of ternary

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

near-rings is also a cubic lateral ideal of ternary near-ring.

Theorem 3.10. Let H be a non-empty subset of R. Then H is a lateral ideal of R if and only if the characteristic cubic set $\chi_H = \langle \bar{\mu}_{\chi_H}, \omega_{\chi_H} \rangle$ of H in R is a cubic lateral ideal of

Proof: Assume that H is a lateral ideal of R. Let $x, y \in R$.

$$\bar{\mu}_{\chi_H}(x-y) < min\{\bar{\mu}_{\chi_H}(x), \bar{\mu}_{\chi_H}(y)\}$$
 and $\omega_{\chi_H}(x-y) > max\{\omega_{\chi_H}(x), \omega_{\chi_H}(y)\}$.

It follows that,
$$\bar{\mu}_{\chi_H}(x-y) = \bar{0} \quad , \quad \min\{\bar{\mu}_{\chi_H}(x), \bar{\mu}_{\chi_H}(y)\} = \bar{1} \quad \text{and} \quad \omega_{\chi_H}(x-y) = 1, \max\{\omega_{\chi_H}(x), \omega_{\chi_H}(y)\} = 0.$$

This implies that $x, y \in H$ but $x - y \notin H$ a contradiction.

$$\bar{\mu}_{\chi_H}(x-y) \ge \min\{\bar{\mu}_{\chi_H}(x), \bar{\mu}_{\chi_H}(y)\} \text{ and } \omega_{\chi_H}(x-y) \le \max\{\omega_{\chi_H}(x), \omega_{\chi_H}(y)\}$$

 $\bar{\mu}_{\chi_H}(y+x-y)<\bar{\mu}_{\chi_H}(x)$ Assume that $\omega_{\chi_H}(y+x-y) > \omega_{\chi_H}(x).$

It follows that $\bar{\mu}_{\chi_H}(y+x-y)=\bar{0}$, $\bar{\mu}_{\chi_H}(x)=\bar{1}$ and defined $\omega_{\chi_H}(y+x-y)=1,$

 $\omega_{\chi_H}(x)=0.$ but $y + x - y \notin H$ contradiction H. Thus $\omega(y+x-y) \le \omega(x)$ $\bar{\mu}(y+x-y) \ge \bar{\mu}(x)$ and

[xyz]=1, $\omega_{\gamma_H}(c)=0.$ $c \in H$ So, $[x(y+c)z] - [xyz] \notin H$ contradiction. a

Hence $\bar{\mu}([x(y+c)z] - [xyz]) \ge \bar{\mu}(c)$ $\omega([x(y+c)z] - [xyz]) \le \omega(c)$

Therefore $\chi_H = \langle \bar{\mu}_{\chi_H}, \omega_{\chi_H} \rangle$ is a cubic lateral ideal of R. Proof: Let $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R_1 . Let Conversely, assume that $\chi_H = \langle \bar{\mu}_{\chi_H}, \omega_{\chi_H} \rangle$ is a cubic lateral ideal of R_1 . Let $\chi_1, \chi_2, \chi_3 \in \mathbb{R}$. Then lateral-ideal of R_2 for any subset H_1 of R_2 of R_3 . $\bar{\mu}_{\chi_H}(x) = \bar{\mu}_{\chi_H}(y) = \bar{1}$ and $x, y \in H$ then $\omega_{\chi_H}(x) = \omega_{\chi_H}(y) = 0$, since χ_H is a cubic lateral ideal of

 $\bar{\mu}_{\chi_H}(x-y) \ge \min\{\bar{\mu}_{\chi_H}(x), \bar{\mu}_{\chi_H}(y)\} = \bar{1} \quad \text{and} \quad \omega_{\chi_H}(x-y)$ $y_j \le max\{\omega_{\chi_H}(x), \omega_{\chi_H}(y)\} = 0.$

This implies $x \in H$ and $y \in R$ be Let $\omega_{\chi_H}(x) = 0$ $\bar{\mu}_{\chi_H}(x) = 1$ $\bar{\mu}_{\chi_H}(y+x-y) \ge \bar{\mu}_{\chi_H}(x) = \bar{1}$

 $\omega_{\chi_H}(y+x-y) \le \omega_{\chi_H}(x) = 0$

Thus $y + x - y \in H$ Let $x, y, z \in R$ $\bar{\mu}([x(y+c)z] - [xyz]) \ge \bar{\mu}(c) = \bar{1}$ and $\omega([x(y +$ $[x(y)] - [xyz] \le \omega(c) = 0$ which implies that $[x(y)] + [x(y)] \le \omega(c) = 0$ $[c)z] - [xyz] \in H$.

Hence H is a lateral ideal of R.

IV. HOMOMORPHISM AND ANTI HOMOMORPHISM OF CUBIC LATERAL IDEALS IN TERNARY NEAR-RINGS

In this section we characterize the properties of homomorphism and anti-homomorphism in cubic lateral ideals between ternary near-rings.

Definition 4.1. [15] Let R and S be any two ternary nearrings. Then a mapping $\theta: R \to S$ is called a ternary nearring homomorphism if $\theta(x + y) = \theta(x) + \theta(y)$ and $\theta([xyz]) = [\theta(x)\theta(y)\theta(z)]$ for all $x, y, z \in R$.

Definition 4.2. [4] Let R and S be any two ternary nearrings. Then a mapping $\theta: R \to S$ is called a ternary nearring anti homomorphism if $\theta(x + y) = \theta(y) + \theta(x)$ and $\theta([xyz]) = [\theta(z)\theta(y)\theta(x)]$ for all $x, y, z \in R$.

Definition 4.3. Let f be a mapping from a set R to R_1 . Let $\mathcal{A}_1 = \langle \bar{\mu}_1, \omega_1 \rangle$ be a cubic set of R and $\mathcal{A}_2 = \langle$ and $\bar{\mu}_2, \omega_2 >$ be a cubic set of R₁. Then the pre-image $f^{-1}(\mathcal{A}_2) = \langle f^{-1}(\bar{\mu}_2), f^{-1}(\omega_2) \rangle$ is a cubic set of R

$$f^{-1}(\mathcal{A}_2)(x) = \langle f^{-1}(\bar{\mu}_2)(x), f^{-1}(\omega_2)(x) \rangle$$

= $\langle \bar{\mu}_2(f(x)), \omega_2(f(x)) \rangle$

The image $f(A_1) = \langle f(\bar{\mu}_1), f(\omega_1) \rangle$ is a cubic set of R_1 defined

$$\bar{\mu}(y+x-y) \geq \bar{\mu}(x) \quad \text{and} \quad \omega(y+x-y) \leq \omega(x) \quad \text{defined} \quad f(\mathcal{A}_1)(x) = \langle f(\bar{\mu}_1)(x), f(\omega_1)(y) \rangle$$
suppose
$$\bar{\mu}([x(y+c)z] - [xyz]) < \bar{\mu}(c) \quad \text{and} \quad f(\bar{\mu}_1)(x) = \begin{cases} \sup_{y \in f^{-1}(x)} \bar{\mu}(y) & \text{if } f^{-1}(x) \neq \emptyset \\ [0,0] & \text{otherwise} \end{cases}$$
this implies
$$\text{that} \bar{\mu}_{\chi_H}(c) = \bar{1}, \quad f(\omega_1)(x) = \begin{cases} \sup_{y \in f^{-1}(x)} \bar{\mu}(y) & \text{if } f^{-1}(x) \neq \emptyset \\ [0,0] & \text{otherwise} \end{cases}$$

$$\bar{\mu}_{\chi_H}([x(y+c)z] - [xyz]) = \bar{0} \quad \text{and} \quad \omega_{\chi_H}([x(y+c)z] - f(\omega_1)(x) = \begin{cases} \sup_{y \in f^{-1}(x)} \bar{\mu}(y) & \text{if } f^{-1}(x) \neq \emptyset \\ [0,0] & \text{otherwise} \end{cases}$$

but **Theorem 4.4.** Let $f: R \to R_1$ be a homomorphism between ternary near-rings R and R_1 . If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic and lateral ideal of R_1 then $f^{-1}(\mathcal{A}) = \langle f^{-1}(\bar{\mu}), f^{-1}(\omega) \rangle$ is a cubic lateral ideal of R.

Set H of R.
$$= \bar{\mu}(f(x-y))$$

$$= \bar{\mu}(f(x)-f(y))$$

$$\geq \min\{\bar{\mu}(f(x)), \bar{\mu}(f(y))\}$$

$$= \min\{f^{-1}(\bar{\mu}(x)), f^{-1}(\bar{\mu}(y))\}$$

$$= \min\{f^{-1}(\bar{\mu}(x)), f^{-1}(\bar{\mu}(y))\}$$

$$= \min\{f^{-1}(\bar{\mu}(x)), f^{-1}(\bar{\mu}(y))\}$$

$$= \max\{f^{-1}(\omega)(x-y) = \omega(f(x-y))$$

$$\leq \max\{\bar{\mu}(f(x)), \omega(f(y))\}$$

$$= \max\{f^{-1}(\omega(x)), f^{-1}(\omega(y))\}$$

$$= \max\{f^{-1}(\omega(x)), f^{-1}(\omega(y))\}$$

$$= \max\{f^{-1}(\omega(x)), f^{-1}(\omega(y))\}$$

$$= \min\{f^{-1}(\bar{\mu}(x)), f^{-1}(\omega(y))\}$$

$$= \lim_{x \to \infty} \{f^{-1}(\omega(x)), f^{-1}(\omega(x))\}$$

$$= \lim_{x \to \infty}$$

where

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

$$= \bar{\mu}(f([x(y+c)z] - [xyz]))$$

$$= \bar{\mu}([f(x)(f(y) + f(c))f(z)] - [f(x)f(y)f(z)])$$

$$\geq \bar{\mu}(f(c))$$

$$= f^{-1}(\bar{\mu}(c))$$

$$f^{-1}(\omega)([x(y+c)z] - [xyz])$$

$$= \omega(f([x(y+c)z] - [xyz]))$$

$$= \omega([f(x)(f(y) + f(c))f(z)] - [f(x)f(y)f(z)])$$

$$\leq \omega(f(c))$$

$$= f^{-1}(\omega(c))$$
Hence, $f^{-1}(\mathcal{A}) = \langle f^{-1}(\bar{\mu}), f^{-1}(\omega) \rangle$ is a cubic lateral ideal of R .

Remark 4.5. We prove the converse of the theorem 4.4. by strengthening the condition on f as follows.

Theorem 4.6. Let $f: R \to R_1$ be an onto homomorphism between ternary near-rings R and R_1 . If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic subset of R_1 such that $f^{-1}(\mathcal{A}) = \langle f^{-1}(\bar{\mu}), f^{-1}(\omega) \rangle$ is a cubic lateral ideal of R then $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R_1 .

```
x, y, z, c \in R_1.
f(a) = x, f(b) = y, f(e) = z, f(d) = c
                           some
                                                           a, b, e, d \in R.
\bar{\mu}(x - y) = \bar{\mu}(f(a) - f(b))
            =\bar{\mu}(f(a-b))
             = f^{-1}(\bar{\mu})(a-b)
            \geq min\{f^{-1}(\bar{\mu})(a), f^{-1}(\bar{\mu})(b)\}
             = min \overline{\psi}(f(a)), \overline{\mu}(f(b))
             = min \mathbb{Z}\bar{\mu}(x), \bar{\mu}(y)
\omega(x - y) = \omega(f(a) - f(b))
             =\omega(f(a-b))
            = f^{-1}(\omega)(a-b)
             \leq \max\{f^{-1}(\omega)(a), f^{-1}(\omega)(b)\}\
             = max \not \equiv \omega(f(a)), \omega(f(b))
             = max \Phi(x), \omega(y)
\bar{\mu}(y + x - y) = \bar{\mu}(f(b) + f(a) - f(b))
                    = \bar{\mu}(f(b+a-b))
                    = f^{-1}(\bar{\mu})(b+a-b)
                    \geq f^{-1}(\bar{\mu})(a)
                    =\bar{\mu}(f(a))
                    =\bar{\mu}(x)
\omega(y + x - y) = \omega(f(b) + f(a) - f(b))
                    =\omega(f(b+a-b))
                    = f^{-1}(\omega)(b+a-b)

\leq f^{-1}(\omega)(a)
                    =\omega(f(a))
                    =\omega(x)
\bar{\mu}([x(y+c)z]-[xyz])
= \bar{\mu}([f(a)(f(b) + f(d)f(e)] - [f(a)f(b)f(e)])
= \bar{\mu}(f([a(b+d)e] - [abe]))
= f^{-1}(\bar{\mu})([a(b+d)e] - [abe])
 \geq f^{-1}(\bar{\mu})(d)
=\bar{\mu}(f(d))
= \bar{\mu}(c)
\omega([x(y+c)z]-[xyz])
=\omega([f(a)(f(b)+f(d)f(e)]-[f(a)f(b)f(e)])
```

```
= \omega(f([a(b+d)e] - [abe]))
= f^{-1}(\omega)([a(b+d)e] - [abe])
\leq f^{-1}(\omega)(d)
= \omega(f(d))
= \omega(c)
```

Hence $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R_1 .

Theorem 4.7. Let $f: R \to R_1$ be an onto ternary near-ring homomorphism. If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of ral R then R, $f(\mathcal{A}) = \langle f(\bar{\mu}), f(\omega) \rangle$ is a cubic lateral ideal of R_1 .

Proof: Let $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ be a cubic lateral ideal of R.

 $f(\bar{\mu})(x') = \sup_{f(x)=x'} \bar{\mu}(x)$ $f(\omega)(x') = \inf_{f(x) = x'} \omega(x)$ $x' \in R_1$ So $f(\mathcal{A}) = \langle f(\bar{\mu}), f(\omega) \rangle$ is non-empty. $x', y' \in R_1$ we $\{x \mid x \in f^{-1}(x' - y')\}$ $\supseteq \{x - y \mid x \in f^{-1}(x') \text{ and } y \in f^{-1}(y')\}$ $\{x \mid x \in f^{-1}(x'y')\}$ $\supseteq \{xy \mid x \in f^{-1}(x') \text{ and } y \in f^{-1}(y')\}\$ $f(\bar{\mu})(x'-y') = \int_{f(p)=x'-y'}^{sup} \bar{\mu}(p)$ $\geq \int_{f(x)=x',f(y)=y'}^{sup} \bar{\mu}(x-y)$ $\geq \int_{f(x)=x',f(y)=y'}^{sup} \min\{\bar{\mu}(x),\bar{\mu}(y)\}$ $= \min \left\{ \sup_{f(x)=x'} |\bar{\mu}(x), \sup_{f(y)=y'} \bar{\mu}(y) \right\}$ $f(\omega)(x'-y') = \min_{f(p)=x'-y'} \inf_{\omega(x-y)} \omega(p)$ $= min\{f(\bar{\mu})(x'), f(\bar{\mu})(y')\}\$ $\leq \inf_{f(x)=x',f(y)=y'} \omega(x-y)$ $\leq \inf_{f(x)=x',f(y)=y'} \max\{\omega(x),\omega(y)\}$ $= \max\left\{\inf_{f(x)=x'} \omega(x),\inf_{f(y)=y'} \omega(y)\right\}$ $= \max\{f(\omega)(x'),f(\omega)(y')\}$ $f(\bar{\mu})(y'+x'-y') = \sup_{f(p)=y'+x'-y'} \sup_{\bar{\mu}(p)} \bar{\mu}(p)$ $\geq \sup_{f(x)=x', f(y)=y'} \bar{\mu}(y+x-y)$ $\geq \sup_{f(x)=x'} \bar{\mu}(x)$ $=f(\bar{\mu})(x')$ $f(\omega)(y' + x' - y') = \int_{f(p) = y' + x' - y'}^{inf} inf \omega(p)$ $\leq \int_{f(x) = x', f(y) = y'}^{inf} \omega(y + x - y)$ $\leq \inf_{f(x)=x'} \omega(x)$ $f(\bar{\mu})([x'(y'+c')z'] - [x'y'z']) = f(p) = ([x'(y'+c')z'] - [x'y'z']) \frac{\sup_{z \in F(p)} \bar{\mu}(p)}{\sup_{z \in F(p)} \bar{\mu}(p)}$ $\geq f(x) = x', f(y) = y', f(z) = z', f(c) = c'$ $\bar{\mu}(([x(y+c)z]-[xyz])$ $\geq \sup_{f(c)=c'} \bar{\mu}(c)$ $= f(\bar{\mu})(c')$ $f(\omega)([x'(y'+c')z']-[x'y'z'])$ $= \int_{f(p)=([x'(y'+c')z']-[x'y'z'])} \inf_{\omega(p)} \omega(p)$ $\leq \int_{f(x)=x^{'},f(y)=y^{'},f(z)=z^{'},f(z)=z^{'}} \inf_{x^{'},(z)=z^{'},f(z)=z^{'}} \inf_{x^{'},(z)=z^{'},f(z)=z^{'}} \inf_{x^{'},(z)=z^{'},f(z)=z^{'},f(z)=z^{'}} \inf_{x^{'},(z)=z^{'},f$ \leq

IARJSET

ISSN (Online) 2393-8021 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

 $\inf_{f(c)=c'}\omega(c)$ $= f(\omega)(c')$

Theorem 4.8. Let $f: R \to R_1$ be an anti-homomorphism between ternary near-rings R and R_1 . If $\mathcal{A} = \langle \bar{\mu}, \omega \rangle$ is a lateral ideal of R_1 $f^{-1}(\mathcal{A}) = \langle f^{-1}(\bar{\mu}), f^{-1}(\omega) \rangle$ is a cubic lateral ideal of [17] L. A. Zadeh, The Concept of a linguistic variable and its application R.

Proof: Follows from theorem 4.4. and hence omitted.

Remark 4.9. We can also state the converse of the theorem 4.8. by strengthening the condition on f as follows.

Theorem 4.10. Let $f: R \to R_1$ be an onto antihomomorphism between ternary near-rings R and R_1 . If \mathcal{A} $= \langle \bar{\mu}, \omega \rangle$ is a cubic set of R_1 such that $f^{-1}(\mathcal{A}) = \langle \bar{\mu}, \omega \rangle$ $f^{-1}(\bar{\mu}), f^{-1}(\omega) > \text{is a cubic lateral ideal of } R \text{ then } \mathcal{A} =$ $\langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of

Proof: Follows from theorem 4.6. and hence omitted.

Theorem 4.11. Let $f: R \to R_1$ be an onto antihomomorphism of ternary near-rings R and R_1 . If A = $\langle \bar{\mu}, \omega \rangle$ is a cubic lateral ideal of R then $f(\mathcal{A}) = \langle f(\bar{\mu}), f(\omega) \rangle$ is a cubic lateral ideal of R_1 .

Proof: Follows from theorem 4.7. and hence omitted.

REFERENCES

- [1] V. Chinnadurai, Fuzzy ideals in algebraic structures, Lap Lambert 10:3659415316/ Academic Publishing, ISBN ISBN13:9783659415319 (2013) Germany
- [2] S. Abou-Zaid, On fuzzy subnear-rings and Ideals, Fuzzy Sets and Systems, 44(1991), 139-146,
- V. Chinnadurai and K. Bharathivelan, Cubic bi-ideals in nearrings, International Journal of Computer and Mathematical Sciences, 5(2)(2016), 44-52.
- V. Chinnadurai and K. Lenin Muthu Kumaran, Fuzzy lateral ideals in ternary near-rings, Proceedings of The International Conference on Mathematics and Its Applications, University College of Engineering, Villupuram, Anna University, Chennai, India. (2014), 660-670.
- T.K. Dutta and S. Kar, A Note On regular ternary semirings, Kyungpook Math., 46(3) (2006), 357-365.
- Y. B. Jun, S.T. Jung and M.S. Kim, Cubic subgroups, Annals of Fuzzy Mathematics and Informatics, 2(2011), 9-15.
- [7] Y.B. Jun, C.S. Kim and K.O. Yang, Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4 (2012), 83-98.
- S.D. Kim and H.S. Kim, On fuzzy ideals of near-rings, Bulletin Korean Mathematical Society, 33(1996), 593-601.
- D.H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 59(1932), 329-338.
- [10] W.G. Lister, Ternary rings, Trans Amer. Math. Soc. 154(1971), 37-
- [11] A. Rosenfeld, Fuzzy groups, Journal of Math. Annal. Appl. 35(1971), 512-517.
- [12] F.M. Sioson, Ideal theory in ternary semigroups, Math. Jap., 10(1965), 63-84.

- [13] N. Thillaigovindan, V. Chinnadurai and S. Kadalarasi, Interval valued fuzzy ideals of near-rings, Journal of Fuzzy Mathematics, 23(2)(2015), 471-483.
- Therefore $f(A) = \langle f(\bar{\mu}), f(\omega) \rangle$ is a cubic lateral ideal [14] A. Uma Maheswari and C. Meera, On fuzzy soft right ternary nearrings, International Journal of Computer Applications, 57(6)(2012), 0975-8887.
 - [15] Warud Nakkhasen and Bundit Pibaljommee, L-Fuzzy ternary subnear-rings, International mathematical forum, 7(41)(2012), 2045-2059
 - [16] L. A. Zadeh, Fuzzy sets, Information and Computation, 8(1965), 338-353.
 - to approximate reasoning I, Information Sciences, 8(1975), 1-24.